Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra
نویسندگان
چکیده
<p style='text-indent:20px;'>In this paper, we characterize the graded post-Lie algebra structures on Schrödinger-Virasoro Lie algebra. Furthermore, as an application, obtain all homogeneous Rota-Baxter operator of weight <inline-formula><tex-math id="M1">$ 1 $</tex-math></inline-formula> algebra.</p>
منابع مشابه
Lie triple derivation algebra of Virasoro-like algebra
Let $mathfrak{L}$ be the Virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. We investigate the structure of the Lie triplederivation algebra of $mathfrak{L}$ and $mathfrak{g}$. We provethat they are both isomorphic to $mathfrak{L}$, which provides twoexamples of invariance under triple derivation.
متن کاملYang – Baxter Operators from Algebra Structures and Lie Super - Algebra Structures
The concept of symmetry plays an important role in solving equations and systems of equations. We will present solutions for the (constant and spectral-parameter) Yang-Baxter equations and Yang-Baxter systems arising from algebra structures and discuss about their symmetries. In the last section, we present enhanced versions of Theorem 1 (from [20]), solutions for the classical Yang-Baxter equa...
متن کاملlie triple derivation algebra of virasoro-like algebra
let $mathfrak{l}$ be the virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. we investigate the structure of the lie triplederivation algebra of $mathfrak{l}$ and $mathfrak{g}$. we provethat they are both isomorphic to $mathfrak{l}$, which provides twoexamples of invariance under triple derivation.
متن کاملL∞ algebra structures of Lie algebra deformations
In this paper,we will show how to kill the obstructions to Lie algebra deformations via a method which essentially embeds a Lie algebra into Strong homotopy Lie algebra or L∞ algebra. All such obstructions have been transfered to the revelvant L∞ algebras which contain only three terms.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic research archive
سال: 2021
ISSN: ['2688-1594']
DOI: https://doi.org/10.3934/era.2021013